
Lecture 35

Spectral Expansions of Source
Fields

In previous lectures, we have assumed plane waves in finding closed form solutions. Plane
waves are simple waves, and their reflections off a flat surface or a planarly layered medium
can be found easily. When we have a source like a point source, it generates a spherical
wave. We do not know how to reflect exactly a spherical wave off a planar interface. But
by expanding a spherical wave in terms of sum of plane waves and evanescennt waves using
Fourier transform technique, we can solve for the solution of a point source near a layered
medium easily in terms of spectral integrals. Sommerfeld was the first person to have done
this, and hence, these integrals are often called Sommerfeld integrals. Finally, we shall apply
the method of stationary phase to approximate these integrals to elucidate their physics.
From this, we can see ray theory emerging from the complicated mathematics. It reminds
me of a lyric from the musical The Sound of Music—Ray, a drop of golden sun! Ray has
mesmerized the human mind, and it will be interesting to see if the mathematics behind it is
equally enchanting.

35.1 Spectral Representations of Sources

A plane wave is a mathematical idealization that does not exist in the real world. In practice,
waves are nonplanar in nature as they are generated by finite sources, such as antennas
and scatterers. For example, a point source generates a spherical wave which is nonplanar.
Fortunately, these waves can be expanded in terms of sum of plane waves. Once this is done,
then the study of non-plane-wave reflections from a layered medium becomes routine. In the
following, we shall show how waves resulting from a point source can be expanded in terms of
plane waves summation. This topic is found in many textbooks [1,31,34,88,89,167,191,204].
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344 Electromagnetic Field Theory

35.1.1 A Point Source

From this point onward, we will adopt the exp(−iωt) time convention to be commensurate
with the optics and physics literatures.

There are a number of ways to derive the plane wave expansion of a point source. We will
illustrate one of the ways. The spectral decomposition or the plane-wave expansion of the
field due to a point source could be derived using Fourier transform technique. First, notice
that the scalar wave equation with a point source is

(
∇2 + k2

0

)
φ(x, y, z) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

0

]
φ(x, y, z) = −δ(x) δ(y) δ(z). (35.1.1)

The above equation could then be solved in the spherical coordinates, yielding the solution
given in the previous lecture, namely, Green’s function with the source point at the origin, or

φ(x, y, z) = φ(r) =
eik0r

4πr
. (35.1.2)

The solution is entirely spherically symmetric due to the symmetry of the point source.
Next, assuming that the Fourier transform of φ(x, y, z) exists,1 we can write

φ(x, y, z) =
1

(2π)3

∞�

−∞

dkxdkydkz φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz. (35.1.3)

Then we substitute the above into (35.1.1), after exchanging the order of differentiation and
integration, one can simplify the Laplacian operator in the Fourier space, or spectral domain,
to arrive at

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= −k2

x − k2
y − k2

z

Then, together with the Fourier representation of the delta function, which is

δ(x) δ(y) δ(z) =
1

(2π)3

∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz (35.1.4)

we convert (35.1.1) into2

∞�

−∞

dkxdkydkz [k2
0 − k2

x − k2
y − k2

z ]φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz (35.1.5)

= −
∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz. (35.1.6)

1The Fourier transform of a function f(x) exists if it is absolutely integrable, namely that
�∞
−∞ |f(x)|dx is

finite (see [203]).
2We have made use of that δ(x) = 1/(2π)

�∞
−∞ dkx exp(ikxx) three times.
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Since the above is equal for all x, y, and z, we can Fourier inverse transform the above to get

φ̃(kx, ky, kz) =
−1

k2
0 − k2

x − k2
y − k2

z

. (35.1.7)

Consequently, we have

φ(x, y, z) =
−1

(2π)3

∞�

−∞

dk
eikxx+ikyy+ikzz

k2
0 − k2

x − k2
y − k2

z

. (35.1.8)
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Figure 35.1: The integration along the real axis is equal to the integration along C plus the
residue of the pole at (k2

0 − k2
x − k2

y)1/2, by invoking Jordan’s lemma.

Weyl Identity

In the above, if we examine the kz integral first, then the integrand has poles at kz =
±(k2

0 − k2
x − k2

y)1/2.3 Moreover, for real k0, and real values of kx and ky, these two poles
lie on the real axis, rendering the integral in (35.1.8) undefined. However, if a small loss is
assumed in k0 such that k0 = k′0 + ik′′0 , then the poles are off the real axis (see Figure 35.1),
and the integrals in (35.1.8) are well-defined. As we shall see, this is intimately related to
the uniqueness principle we have studied before: An infinitesimal loss is needed to guarantee
uniqueness in an open space.

First, the reason is that φ(x, y, z) is not strictly absolutely integrable for a lossless medium,
and hence, its Fourier transform may not exist [47]. Second, the introduction of a small loss
also guarantees the radiation condition and the uniqueness of the solution to (35.1.1), and
therefore, the equality of (35.1.2) and (35.1.8) [34].

Observe that in (35.1.8), when z > 0, the integrand is exponentially small when =m[kz]→
∞. Therefore, by Jordan’s lemma, the integration for kz over the contour C as shown in Figure

3In (35.1.8), the pole is located at k2
x + k2

y + k2
z = k2

0 . This equation describes a sphere in k space, known
as the Ewald’s sphere [205].
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35.1 vanishes. Then, by Cauchy’s theorem, the integration over the Fourier inversion contour
on the real axis is the same as integrating over the pole singularity located at (k2

0−k2
x−k2

y)1/2,
yielding the residue of the pole (see Figure 35.1). Consequently, after doing the residue
evaluation, we have

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′zz

k′z
, z > 0, (35.1.9)

where k′z = (k2
0 − k2

x − k2
y)1/2.

Similarly, for z < 0, we can add a contour C in the lower-half plane that contributes to
zero to the integral, one can deform the contour to pick up the pole contribution. Hence, the
integral is equal to the pole contribution at k′z = −(k2

0 − k2
x − k2

y)1/2 (see Figure 35.1). As
such, the result for all z can be written as

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′z|z|

k′z
, all z. (35.1.10)

By the uniqueness of the solution to the partial differential equation (35.1.1) satisfying
radiation condition at infinity, we can equate (35.1.2) and (35.1.10), yielding the identity

eik0r

r
=

i

2π

∞�

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
, (35.1.11)

where k2
x+k2

y+k2
z = k2

0, or kz = (k2
0−k2

x−k2
y)1/2. The above is known as the Weyl identity

(Weyl 1919). To ensure the radiation condition, we require that =m[kz] > 0 and <e[kz] > 0
over all values of kx and ky in the integration. Furthermore, Equation (35.1.11) could be
interpreted as an integral summation of plane waves propagating in all directions, including
evanescent waves. It is the plane-wave expansion (including evanescent wave) of a spherical
wave.

Figure 35.2: The wave is propagating for kρ vectors inside the disk, while the wave is evanes-
cent for kρ outside the disk.
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One can also interpret the above as a 2D surface integral in the Fourier space over the
kx and ky plane or variables. When k2

x + k2
y < k2

0, or inside a disk of radius k0, the waves
are propagating waves. But for contributions outside this disk, the waves are evanescent
(see Figure 35.2). And the high Fourier (or spectral) components of the Fourier spectrum
correspond to evanescent waves. Since high spectral components, which are related to the
evanescent waves, are important for reconstructing the singularity of the Green’s function.

y
kρ

a
φ x

ρ

Figure 35.3: The kρ and the ρ vector on the xy plane.

Sommerfeld Identity

The Weyl identity has double integral, and hence, is more difficult to integrate numerically.
Here, we shall derive the Sommerfeld identity which has only one integral. In (35.1.11), we
can write kρ = x̂kρ cosα+ ŷkρ sinα, ρ = x̂ρ cosφ+ ŷρ sinφ (see Figure 35.3), and dkxdky =
kρdkρ dα. Then, kxx+ kyy = kρ · ρ = kρ cos(α− φ), and we have

eik0r

r
=

i

2π

∞�

0

kρdkρ

� 2π

0

dα
eikρρ cos(α−φ)+ikz|z|

kz
, (35.1.12)

where kz = (k2
0−k2

x−k2
y)1/2 = (k2

0−k2
ρ)1/2, where in cylindrical coordinates, in the kρ-space,

or the Fourier space, k2
ρ = k2

x + k2
y. Then, using the integral identity for Bessel functions

given by4

J0(kρρ) =
1

2π

2π�

0

dα eikρρ cos(α−φ), (35.1.13)

(35.1.12) becomes

eik0r

r
= i

∞�

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (35.1.14)

The above is also known as the Sommerfeld identity (Sommerfeld 1909 [207]; [191][p. 242]).
Its physical interpretation is that a spherical wave can be expanded as an integral summation
of conical waves or cylindrical waves in the ρ direction, times a plane wave in the z direction
over all wave numbers kρ. This wave is evanescent in the ±z direction when kρ > k0.

4See Chew [34], or Whitaker and Watson(1927) [206].
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By using the fact that J0(kρρ) = 1/2[H
(1)
0 (kρρ) + H

(2)
0 (kρρ)], and the reflection formula

that H
(1)
0 (eiπx) = −H(2)

0 (x), a variation of the above identity can be derived as

eik0r

r
=
i

2

∞�

−∞

dkρ
kρ
kz
H

(1)
0 (kρρ)eikz|z|. (35.1.15)

–k0
•

Im [kρ]

• +k0

Sommerfeld
Integration Path

Re [kρ]

Figure 35.4: Sommerfeld integration path.

Since H
(1)
0 (x) has a logarithmic branch-point singularity at x = 0,5 and kz = (k2

0 − k2
ρ)1/2

has algebraic branch-point singularities at kρ = ±k0, the integral in Equation (35.1.15) is
undefined unless we stipulate also the path of integration. Hence, a path of integration
adopted by Sommerfeld, which is even good for a lossless medium, is shown in Figure 35.4.
Because of the manner in which we have selected the reflection formula for Hankel functions,

i.e., H
(1)
0 (eiπx) = −H(2)

0 (x), the path of integration should be above the logarithmic branch-
point singularity at the origin. With this definition of the Sommerfeld integration, the integral
is well defined even when there is no loss, i.e., when the bronach points ±k0 are on the real
axis.

35.2 A Source on Top of a Layered Medium

It can be shown that plane waves reflecting from a layered medium can be decomposed into
TE-type plane waves, where Ez = 0, Hz 6= 0, and TM-type plane waves, where Hz = 0,
Ez 6= 0.6 One also sees how the field due to a point source can be expanded into plane waves
in Section 35.1.

In view of the above observations, when a point source is on top of a layered medium,
it is then best to decompose its field in terms of waves of TE-type and TM-type. Then,
the nonzero component of Ez characterizes TM waves, while the nonzero component of Hz

characterizes TE waves. Hence, given a field, its TM and TE components can be extracted
readily. Furthermore, if these TM and TE components are expanded in terms of plane waves,
their propagations in a layered medium can be studied easily.

The problem of a vertical electric dipole on top of a half space was first solved by Som-
merfeld (1909) [207] using Hertzian potentials, which are related to the z components of the

5H
(1)
0 (x) ∼ 2i

π
ln(x), see Chew [34][p. 14], or Abromawitz or Stegun [107].

6Chew, Waves and Fields in Inhomogeneous Media [34]; Kong, Electromagnetic Wave Theory [31].
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electromagnetic field. The work is later generalized to layered media, as discussed in the liter-
ature. Later, Kong (1972) [208] suggested the use of the z components of the electromagnetic
field instead of the Hertzian potentials.

35.2.1 Electric Dipole Fields–Spectral Expansion

The representation of a spherical wave in terms of plane waves can be done using Weyl identity
or Sommerfeld identiy. Here, we will use Sommerfeld identity in anticipation of numerical
integration, since only single integrals are involved. The E field in a homogeneous medium
due to a point current source or a Hertzian dipole directed in the α̂ direction, J = α̂I` δ(r),
is derivable via the vector potential method or the dyadic Green’s function approach. Then,
using the dyadic Green’s function approach, or the vector/scalar potential approach, the field
due to a Hertzian dipole is given by

E(r) = iωµ

(
I +
∇∇
k2

)
· α̂I` e

ikr

4πr
, (35.2.1)

where I` is the current moment and k = ω
√
µε , the wave number of the homogeneous

medium. Furthermore, from ∇ × E = iωµH, the magnetic field due to a Hertzian dipole is
given by

H(r) = ∇× α̂I` e
ikr

4πr
. (35.2.2)

With the above fields, their TM and TE components can be extracted easily.

(a) Vertical Electric Dipole (VED)

Region 1

Region i

z

x

–d1

–di

Figure 35.5: A vertical electric dipole over a layered medium.

A vertical electric dipole shown in Figure 35.5 has α̂ = ẑ; hence, the TM component of the
field is characterized by Ez 6= 0 or that

Ez =
iωµI`

4πk2

(
k2 +

∂2

∂z2

)
eikr

r
, (35.2.3)
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and the TE component of the field is characterized by

Hz = 0, (35.2.4)

implying the absence of the TE field.

Next, using the Sommerfeld identity (35.1.15) in the above, and after exchanging the order
of integration and differentiation, we have7

Ez =
−I`
4πωε

∞�

0

dkρ
k3
ρ

kz
J0(kρρ)eikz|z|, (35.2.5)

after noting that k2
ρ + k2

z = k2. Notice that now Equation (35.2.5) expands the z component
of the electric field in terms of cylindrical waves in the ρ direction and a plane wave in the z
direction. Since cylindrical waves actually are linear superpositions of plane waves, because
we can work backward from (35.1.15) to (35.1.11) to see this. As such, the integrand in
(35.2.5) in fact consists of a linear superposition of TM-type plane waves. The above is also
the primary field generated by the source.

Consequently, for a VED on top of a stratified medium as shown, the downgoing plane
wave from the point source will be reflected like TM waves with the generalized reflection
coefficient R̃TM12 . Hence, over a stratified medium, the field in region 1 can be written as

E1z =
−I`

4πωε1

∞�

0

dkρ
k3
ρ

k1z
J0(kρρ)

[
eik1z|z| + R̃TM12 eik1zz+2ik1zd1

]
, (35.2.6)

where k1z = (k2
1 − k2

ρ)
1
2 , and k2

1 = ω2µ1ε1, the wave number in region 1.

The phase-matching condition dictates that the transverse variation of the field in all the
regions must be the same. Consequently, in the i-th region, the solution becomes

εiEiz =
−I`
4πω

∞�

0

dkρ
k3
ρ

k1z
J0(kρρ)Ai

[
e−ikizz + R̃TMi,i+1e

ikizz+2ikizdi
]
. (35.2.7)

Notice that Equation (35.2.7) is now expressed in terms of εiEiz because εiEiz reflects and
transmits like Hiy, the transverse component of the magnetic field or TM waves.8 Therefore,

R̃TMi,i+1 and Ai could be obtained using the methods discussed in Chew, Waves and Fields in
Inhomogeneous Media.

This completes the derivation of the integral representation of the electric field everywhere
in the stratified medium. These integrals are known as Sommerfeld integrals. The case
when the source is embedded in a layered medium can be derived similarly

7By using (35.1.15) in (35.2.3), the ∂2/∂z2 operating on eikz |z| produces a Dirac delta function singularity.
Detail discussion on this can be found in the chapter on dyadic Green’s function in Chew, Waves and Fields
in Inhomogeneous Media [34].

8See Chew, Waves and Fields in Inhomogeneous Media [34], p. 46, (2.1.6) and (2.1.7)
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(b) Horizontal Electric Dipole (HED)

The HED is more complicated. Unlike the VED that excites only the TM waves, an HED will
excite both TE and TM waves. For a horizontal electric dipole pointing in the x direction,
α̂ = x̂; hence, (35.2.1) and (35.2.2) give the TM and the TE components as

Ez =
iI`

4πωε

∂2

∂z∂x

eikr

r
, (35.2.8)

Hz = − I`
4π

∂

∂y

eikr

r
. (35.2.9)

Then, with the Sommerfeld identity (35.1.15), we can expand the above as

Ez = ± iI`

4πωε
cosφ

∞�

0

dkρ k
2
ρJ1(kρρ)eikz|z| (35.2.10)

Hz = i
I`

4π
sinφ

∞�

0

dkρ
k2
ρ

kz
J1(kρρ)eikz|z|. (35.2.11)

Now, Equation (35.2.10) represents the wave expansion of the TM field, while (35.2.11) rep-
resents the wave expansion of the TE field. Observe that because Ez is odd about z = 0 in
(35.2.10), the downgoing wave has an opposite sign from the upgoing wave. At this point,
the above are just the primary field generated by the source.

On top of a stratified medium, the downgoing wave is reflected accordingly, depending on
its wave type. Consequently, we have

E1z =
iI`

4πωε1
cosφ

∞�

0

dkρ k
2
ρJ1(kρρ)

[
±eik1z|z| − R̃TM12 eik1z(z+2d1)

]
, (35.2.12)

H1z =
iI`

4π
sinφ

∞�

0

dkρ
k2
ρ

k1z
J1(kρρ)

[
eik1z|z| + R̃TE12 e

ik1z(z+2d1)
]
. (35.2.13)

Notice that the negative sign in front of R̃TM12 in (35.2.12) follows because the downgoing
wave in the primary field has a negative sign.

35.3 Stationary Phase Method

Sommerfeld integrals are rather complex, and by themselves, they do not offer much physical
insight into the physics of the field. To elucidate the physics, we can apply the stationary
phase method to find approximations of these integrals when the frequency is high. In order to
avoid having to work with special functions like Bessel functions, we convert the Sommerfeld
integrals back to spectral integrals in the cartesian coordinates. We could have obtained the
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aforementioned integrals in cartesian coordinates were we to start with the Weyl identity
instead of the Sommerfeld identity. To do the back conversion, we make use of the identity,

eik0r

r
=

i

2π

∞�

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
= i

∞�

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (35.3.1)

We can just focus our attention on the reflected wave term in (35.2.6) and rewrie it in cartesian
coordinates to get

ER1z =
−I`

8π2ωε1

∞�

−∞

dkxdky
k2
x + k2

y

k1z
RTM12 eikxx+ikyy+ik1z(z+2d1)

=

∞�

−∞

dkxdky
1

k1z
F (kx, ky)eikxx+ikyy+ik1z(z+2d1) (35.3.2)

where

F (kx, ky) =
−I`

8π2ωε1
(k2
x + k2

y)RTM12

In the above, k2
x+k2

y+k2
1z = k2

1 is the dispersion relation satisfied by the plane wave in region

1. Also, RTM12 is dependent on kiz =
√
k2
i − k2

x − k2
y in cartesian coordinates, where i = 1, 2.

Now the problem reduces to finding the approximation of the following integral:

ER1z =

∞�

−∞

dkxdky
1

k1z
F (kx, ky)eiλh(kx,ky) (35.3.3)

where

λh(kx, ky) =
(
kx
x

r
+ ky

y

r
+ k1z

z

r

)
r, g(kx, ky, λ) = eiλh(kx,ky) (35.3.4)

The large parameter here is λ = r. For simplicity, we have set d1 = 0 to begin with.
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Figure 35.6: In this figure, t can represent kx or ky when one of them is varying. Around
the stationary phase point, the function h(t) is slowly varying. When λ = r is large, the
function g(λ, kx, ky) is rapidly varying with respect to either kx or ky. Hence, most of the
contributions to the integral comes from around the stationary phase point.

In the above, eiλh(kx,ky) is a rapidly varying function of kx and ky when x, y, and z
or λ = r are large compared to wavelength.9 In other words, a small change in kx or ky
will cause a large change in the phase of the integrand, or the integrand will be a rapidly
varying function of kx and ky. Due to the cancellation of the integral when one integrates
a rapidly varying function, most of the contributions to the integral will come from around
the stationary point of h(kx, ky) or where the function is least slowly varying. Otherwise,
the integrand is rapidly varying away from this point, and the integration will destructively
cancel with each other, while around the stationary point, they will add constructively.

The stationary point in the kx and ky plane is found by setting the derivatives of h(kx, ky)
with respect to to kx and ky to zero. By so doing

∂h

∂kx
=
x

r
− kx
k1z

z

r
= 0,

∂h

∂ky
=
y

r
− ky
k1z

z

r
= 0 (35.3.5)

The above represents two equations from which the two unknowns, kxs and kys, at the
stationary phase point can be solved for. By expressing the above in spherical coordinates,
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, the values of (kxs, kys), that satisfy the above
equations are

kxs = k1 sin θ cosφ, kys = k1 sin θ sinφ (35.3.6)

with the corresponding k1zs = k1 cos θ.
When one integrates on the kx and ky plane, the dominant contribution to the integral will

come from the point in the vicinity of (kxs, kys). Assuming that F (kx, ky) is slowly varying,

9The yardstick in wave physics is always wavelength. Large distance is also synonymous to increasing the
frequency or reducing the wavelength.
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we can equate F (kx, ky) to a constant equal to its value at the stationary phase point, and
say that

ER1z ' F (kxs, kys)

∞�

−∞

1

k1z
eikxx+ikyy+ik1zzdkxdky = 2πF (kxs, kys)

eik1r

ir
(35.3.7)

The above has two important physical interpretations.

(i) Even though a source is emanating plane waves in all directions in accordance to
(35.1.11), at the observation point r far away from the source point, only one or few
plane waves in the vicinity of the stationary phase point are important. They interfere
with each other constructively to form a spherical wave that represents the ray connect-
ing the source point to the observation point. Plane waves in other directions interfere
with each other destructively, and are not important. That is the reason that the source
point and the observation point is connected only by one ray, or one bundle of plane
waves in the vicinity of the stationary phase point.

(ii) The function F (kx, ky) could be a very complicated function like the reflection coefficient
RTM , but only its value at the stationary phase point matters. If we were to make d1 6= 0
again in the above analysis, then r → rI =

√
x2 + y2 + (z + 2d1)2. Due to the reflecting

half-space, the source point has an image point as shown in Figure 35.7 This physical
picture is shown in the figure where rI now is the distance of the observation point
to the image point. The stationary phase method extract a ray that emanates from
the source point, bounces off the half-space, and the reflected ray reaches the observer
modulated by the reflection coefficient RTM . But the value of the reflection coefficient
that matters is at the angle at which the incident ray impinges on the half-space.

Figure 35.7: At high frequencies, the source point and the observation point are connected
by a ray. The ray represents a bundle of plane waves that interfere constructively. This even
true for a bundle of plane waves that reflect off an interface. So ray theory or ray optics
prevails here, and the ray bounces off the interface according to the reflection coefficient of a
plane wave impinging at the interface with θI .
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35.4 Riemann Sheets and Branch Cuts

The Sommerfeld integrals will have integrands that are multi-value or double value. Proper
book keeping is needed so that the evaluation of these integrals can be performed unambigu-
ously. The function kz = (k2

0 − k2
ρ)1/2 in (35.1.14) and (35.1.15) are double-value functions

because, in taking the square root of a number, two values are possible. In particular, kz is
a double-value function of kρ. Consequently, for every point on a complex kρ plane in Figure
35.4, there are two possible values of kz. Therefore, the integral (35.1.10) is undefined unless
we stipulate which of the two values of kz is adopted in performing the integration.

A multivalue function is denoted on a complex plane with the help of Riemann sheets
[34, 82]. For instance, a double-value function such as kz is assigned two Riemann sheets to
a single complex plane. On one of these Riemann sheets, kz assumes a value just opposite in
sign to the value on the other Riemann sheet. The correct sign for kz is to pick the square
root solution so that =m(kz) > 0. This will ensure a decaying wave from the source.

35.5 Some Remarks

Even though we have arrived at the solutions of a point source on top of a layered medium
by heuristic arguments of plane waves propagating through layered media, they can also
be derived more rigorously. For example, Equation (35.2.6) can be arrived at by matching
boundary conditions at every interface. The reason why a more heuristic argument is still
valid is due to the completeness of Fourier transforms. It is best explained by putting a source
over a half space and a scalar problem.

We can expand the scalar field in the upper region as

Φ1(x, y, z) =

∞�

−∞

dkxdkyΦ̃1(kx, ky, z)e
ikxx+ikyy (35.5.1)

and the scalar field in the lower region as

Φ2(x, y, z) =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z)e
ikxx+ikyy (35.5.2)

If we require that the two fields be equal to each other at z = 0, then we have

∞�

−∞

dkxdkyΦ̃1(kx, ky, z = 0)eikxx+ikyy =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z = 0)eikxx+ikyy (35.5.3)

In order to remove the integral, and replace it with a simple scalar problem, one has to impose
the above equation for all x and y. Then the completeness of Fourier transform implies that10

Φ̃1(kx, ky, z = 0) = Φ̃2(kx, ky, z = 0) (35.5.4)

10Or that we can perform a Fourier inversion on the above integrals.
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The above equation is much simpler than that in (35.5.3). In other words, due to the com-
pleteness of Fourier transform, one can match a boundary condition spectral-component by
spectral-component. If the boundary condition is matched for all spectral components, than
(35.5.3) is also true.


